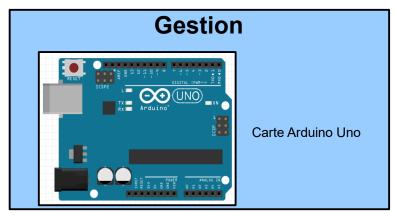
Lycée Le Corbusier St Etienne du Rouvray

BAC PRO Microtechniques

TECHNOLOGIES DES MICROSYSTÈMES Capteurs et détecteurs, analogiques et numériques (principes de fonctionnement, caractéristiques et limites d'utilisation)

Activité Page 1/2


Objectif : L'élève doit être capable de comprendre les détecteurs analogiques, leurs principes de fonctionnement, caractéristiques et limites d'utilisations.

Scénario N°2 : L'éclairage public Analogique

Scénario

Si la lumière est insuffisante alors la lumière s'allume sinon elle s'éteint.

Matériel nécessaire

Actionneur		LED
Symbole du schéma de principe	Nom de l'élément	Empreinte du composant
	Une résistance	
R3 220	R = 220Ω	-3115-
	Une LED	
D2 LED	+ = Anode - = Cathode	AND CANDON

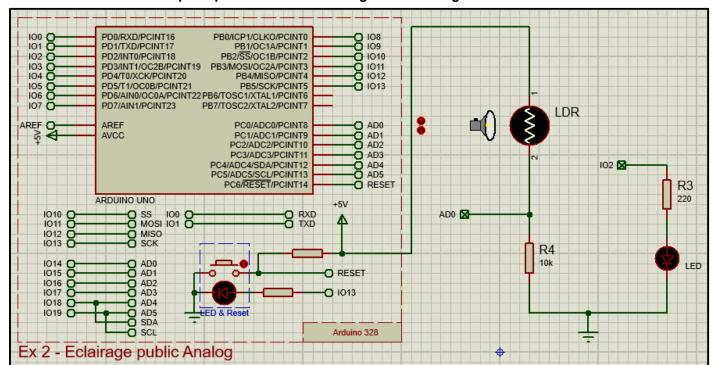
Détecteur de lumière		
Symbole du schéma de principe	Nom de l'élément	Empreinte du composant
- LDR1	Une LDR	Mos
TORCH LDR	Une cellule photo électrique	
□ R4	Une résistance	
10k	R = 10 kΩ	-3113-

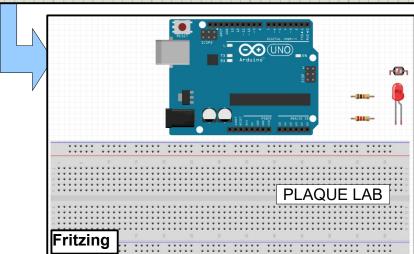
Câblage

La LED est branchée sur le port Digital IO2.

Le détecteur de lumière est branché sur le port Digital AD0. AD correspond à conversion Analogique en Digital.

Lycée Le Corbusier St Etienne du Rouvray


BAC PRO Microtechniques


Platine d'essai

TECHNOLOGIES DES MICROSYSTÈMES Capteurs et détecteurs, analogiques et numériques (principes de fonctionnement, caractéristiques et limites d'utilisation)

Activité Page 2/2

Conversion du schéma de principe en schéma de câblage avec Fritzing

L'utilisation du logiciel FRITZING nécessite l'usage du fichier : RESSOURCE - 4 - Cablage – Utilisation_fritzing_premierpas.pdf

Travail à réaliser avec le logiciel FRITZING

- 1 D'après le schéma de principe, réaliser le schéma de câblage.
 - Ce dernier est réalisé dans l'onglet "Platine d'essai"
- 2 Vérifier dans la vue schématique si tous les branchements sont réalisés.
 - Si oubli, revenir sur l'onglet "Platine d'essai" pour apporter la correction⊨
- 3 Valider le montage.

Travail pratique

- 1 Réaliser le montage à l'aide du matériel mis à disposition.
- 2 Valider le montage en appelant ton professeur.
- 3 Lancer le logiciel MBLOCK. Charger le programme " 2 Eclairage public Analog ".
- 4 Valider le fonctionnement.